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ABSTRACT 

We present two LLNL research projects in the topical areas of location and detection. The first project assesses 
epicenter accuracy using a multiple-event location algorithm, and the second project employs waveform subspace 
Correlation to detect and identify events at Fennoscandian mines. 

Accurately located seismic events are the bases of location calibration. A well-characterized set of calibration events 
enables new Earth model development, empirical calibration, and validation of models. In a recent study, Bondar et 
al. (2003) develop network coverage criteria for assessing the accuracy of event locations that are determined using 
single-event, linearized inversion methods. These criteria are conservative and are meant for application to large 
bulletins where emphasis is on catalog completeness and any given event location may be improved through 
detailed analysis or application of advanced algorithms. Relative event location techniques are touted as 
advancements that may improve absolute location accuracy by 1) ensuring an internally consistent dataset, 2) 
constraining a subset of events to known locations, and 3) taking advantage of station and event correlation 
structure. Here we present the preliminary phase of this work in which we use Nevada Test Site (NTS) nuclear 
explosions, with known locations, to test the effect of travel-time model accuracy on relative location accuracy. Like 
previous studies, we find that the reference velocity-model and relative-location accuracy are highly correlated. We 
also find that metrics based on travel-time residual of relocated events are not a reliable for assessing either velocity- 
model or relative-location accuracy. 

In the topical area of detection, we develop specialized correlation (subspace) detectors for the principal mines 
surrounding the ARCES station located in the European Arctic. Our objective is to provide efficient screens for 
explosions occurring in the mines of the Kola Peninsula (Kovdor, Zapolyarny, Olenogorsk, Khibiny) and the major 
iron mines of northern Sweden (Malmberget, Kiruna). In excess of 90% of the events detected by the ARCES 
station are mining explosions, and a significant fraction are from these northern mining groups. The primary 
challenge in developing waveform correlation detectors is the degree of variation in the source time histories of the 
shots, which can result in poor correlation among events even in close proximity. Our approach to solving this 
problem is to use lagged subspace correlation detectors, which offer some prospect of compensating for variation 
and uncertainty in source time functions. 



OBJECTIVE 

One of the most important and challenging aspects in seismic calibration is assessment of location accuracy for 
candidate reference events. Location accuracy criteria based on network coverage has been developed for routine 
bulletins (e.g. Bondar et al., 2003), where single-event algorithms make use of contributed phase picks. These 
objective criteria allow efficient assessment of large volumes of bulletin data. However, there is an increasing trend 
towards the application of multiple-event algorithms combined with careful analyst review to develop reference- 
event bulletins (Armbruster et al., 2002; Engdahl et al., 2002). Currently accepted criteria (Bondar et al., 2003) are 
not applicable to - and probably over estimate - location errors determined using multiple-event algorithms. One of 
the primary benefits of multiple-event locations is the determination of station corrections based on the best-located 
events; in effect, diminishing the importance of reference velocity model accuracy. Here we present preliminary 
results for seismic location accuracy studies using the Nevada Test Site Nuclear (NTS) explosions with known 
locations. To test the importance of velocity model accuracy, 74 events are relocated using 4 distinct travel-time 
models. 

In the second part of this study we examine the use of waveform subspace detectors in Fennoscandia. The LLNL 
GNEM Program is conducting research on subspace @.e. generalized correlation) detectors for use in mine-event 
screening. Regional mining explosions dominate detections at some seismic monitoring stations. This is particularly 
true of the ARCES array, where the large mining districts of the Khibiny Massif, Zapolyamy, Olenogorsk, Kovdor 
and northern Sweden (iron mines Malmberget and Kiruna) constitute up to 90 percent of detections. Here, we 
present initial efforts to develop screening detectors for application to the mines of the Khibiny Massif. 

RESEARCH ACCOMPLISHED 

Location Accuracv 

Dataset 

We make use of the NTS dataset (Walter et al., this volume), with known event locations, to study the accuracy of 
relative seismic locations. The 74 explosions and 61 regional stations used in this study are shown in Figure 1. An 
individual LLNL analyst re-picked these events to produce a high-quality dataset. The 1577 LLNL phase arrivals, 
with best-fit regressions , are shown in Figure 2. NEIC phase picks augment the LLNL dataset in some of our 
relocations, but only picks whose residuals are within 3 standard deviations of the empirical curves are kept. The 
number of picks outside the 3 standard deviation bound far exceeds statistical expectations (including the LLNL 
picks). In large part, transient clock errors are thought to account for the heavy tails in the residual distribution in 
this dataset (Walter et al., this volume). 

Travel-time models 

Events are re-located using 4 travel-time models. The first model consists of linear, empirical fits to LLNL phase 
picks (Figure 2):two other models are derived from regional surface-wave modeling (Patton and Taylor, 1984 and 
Priestly and Brune, 1978). Finally, we test iasp91 for comparison with a global average. Pn arrivals reduced by 
predictions from the 4 models are shown in Figure 2b. The regression model fits best, followed by Patton & Taylor, 
Priestly & Brune, and iasp91. Ordered ranking of model fit to Pg and Lg arrivals (not shown) is the same as for Pn, 
and we use this order when assessing the importance of the travel-time model accuracy for multiple-event location 
accuracy. 





determined using residuals from grid-search locations. This process is iterated to convergence. One of the relevant 
features of GMEL is the ability to constrain any number of events to the known location, therefore, supplementary 
information (e.g. satellite images) may be used to improve accuracy of an event cluster. 

Location experiments 

We simultaneously relocate 74 NTS nuclear exulosions with known hmocenters using the GMEL locator. New 
lined 

curves are most accurate, with mean mislocation of 3.3 km and 95% of the locations within 6 km of the known 
epicenter. Considering the careful review of each phase arrival and the empirical nature of the travel-time curves, 
this degree of accuracy (-GT6) is likely to approach the lower bound of regional location accuracy for this dataset. 
We acknowledge that waveform correlation, which is not used for any of our amval times, could reduce the 
uncertainty of arrival times, and thus location error, 

Figure 3. Multiple-event location epicenter errors for 4 models a) LLNL empirical curves, b) Patton & 
Taylor, c) Priestly & Brune, and d) iasp91. Blue stars and black dots are known and estimated locations, 
respectively. Note how each model imparts a distinct vector bias. 

Similar to previous studies, we find that model error can contribute significantly to multiple-event mislocation, and 
this is apparent in Figures 3 and 4, parts b,c, and d. For the most part, increased error is manifested as a bias, with 
each model producing a distinct vector shift in the locations. The mean location accuracy of the Patton and Taylor, 
Priestly and Brune, and iasp91 models is 4.5 km, 5.6 km, and 9.9 km, respectively ; the 95% bound on location 
accuracy is 8.7 km, 12.8 km, and 13.3 km, respectively. Using the error from the empirical curves as a baseline, we 
deduce that the model component of error is between 1.2 (Patton and Taylor) and 6.6 km (iasp91) in this study. We 
note that in other parts of the world observed regional iasp91 residuals can be more than twice that observed in the 



Basin and Range of Nevada. Therefore, regional application of a global model is probably unwise, even when using 
a multiple location algorithm and groomed dataset. 

The correlation between travel-time prediction and epicenter error is shown in Figure 5. Epicenter error is plotted 
against known and estimated travel-time prediction errors. Known errors are determined using known 
hypocenter parameters, and estimated travel-time errors are derived from GMEL posteriori residuals. It is apparent 
that epicenter and known travel-time prediction errors are highly correlated, and that model-based, travel-time 
prediction error remains significant even when using a multiple-event algorithm. Perhaps more important is the lack 
of reliability in the correlation between estimated model error and location accuracy. Although the first 3 models 
suggest a weak correlation between estimated model error and location accuracy, the iasp91 point significantly 
deviates from this trend. We conclude, therefore, that travel-time residuals should not be used to access location 
accuracy. This conclusion is consistent with previous studies (e.g. Myers and Schultz, 2000; Bondar et al., 2003), 
where confidence ellipses (based on posteriori residual distributions) significantly underestimate true location error. 
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Figure 4. Histograms of epicenter error for the 4 velocity models. a) LLNL empirical travel-time curves. b) 
Patton and Taylor (1994). c) Priestly and Brune (1978). d) iasp91. and e) is a composite of parts a through d 
for comparison. 
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Figure 5. Mean epicenter error is plotted against mean absolute deviation (MAD) of travel-time Drediction 
el 
P I line 
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residuals -which are necessarily used in earthquake studies - are used to assess travel-time prediction error. 

Lastly, our regional results suggest better location accuracy than the broader study of Bondar et al. (2003). Bondar et 
al., (2003) conclude that regional events with good azimuthal coverage (secondary azimuthal gap<l2Oi) are 
accurate to within 20 km at 95% confidence. In the present study we find that iasp91 produces locations with 
accuracy of -13km at 95% confidence. The discrepancy is probably due to a combination of factors, including: the 
use of analyst-reviewed arrival times; the use of the multiple-event location algorithm, which reduces errors 
attributable to 3-dimensional Earth structure; and iasp91 is better suited to the Basin and Range than many other 
regions of the world. 
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Figure 6. Master waveforms for the 61 event of the Kirovsk mine recorded at ARCES. 

Figure 7. Histogram of correlation values for the 61 master events. Despite our efforts to select events with 
similar tiring practice, waveform correlation tends to be low. The subspace detector makes use of the 
disparate waveforms to span the possible waveform characteristics for a particular mine. 

The master-event waveforms from the 40-event cluster were decomposed into time-series basis functions. A subset 
of the basis is used as the signal representation in the subspace detector. The size (dimension) of the subset is 
chosen to maximize the probability of detection and minimize false alarms. Figure 8 shows one of the diagnostics 
used to determine the size of the basis subset. It displays the energy capture, i.e. the fraction of waveform energy 
contained in the basis (least-sauare) reuresentation of the waveforms as a function of the selected dimension of the 

master event waveforms. The 
significant number of the signals are not well represented except at very large subset dimension (approaching 40); 
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this fact suggests a high degree of diversity among the signals generated by this mine and potentially poor 
correlation detector performance. 

Drms is plotted against a trial 
detector subspace dimension (see 

A theoretical probability of detection can be calculated for a subspace detector constructed with a basis of given 
dimension. The operating assumption is that the detector conducts a binary hypothesis test on the presence of white 
Gaussian noise (the null hypothesis) in a detection window, or on noise plus a signal represented as a linear 
combination of the basis functions (the alternate hypothesis). Figure 9 shows a suite of theoretical probability of 
detection curves, one for each possible choice of subspace dimension. The single curve highlighted in red shows the 
probability of detection for a subspace detector of dimension 15 generated from the 40 master event waveforms, for 
a fixed threshold (0.4). The probability of detection curve actually is a hybrid, consisting of the average probability 
of detection for the collection of 40 events assuming all were equally likely. At the selected threshold, the 
probability of a false alarm is vanishingly small. 

This detector was run on a data window consisting of the first 40 days of 2003 for a limited number of ARCES 
elements. The detector made 9 detections for this time interval, missing 19 events that are known to have occurred 
at the Kirovsk mine during this interval. The false alarm rate was zero, as expected. Our result suggests that for the 
Kirovsk mine, the variability of firing practice and geographic distribution of sources produces an exceedingly 
diverse set of waveforms. It is possible that a master-event set drawn from a longer time window is needed to 
capture the full waveform variability. 



Figure 9. The probability of detection for subspace detectors is a function of the order of the detector. A 
subspace detector designed from 50 master event waveforms can have an order ranging anywhere from 1 to 
40. This suite of curves displays the theoretical probability of detection for each possible detector order. The 
red curve corresponds to the order 15 detector actually used in our attempt to detect Kirovsk compact 
underground mining events. 

CONCLUSIONS AND RECOMMENDATIONS 

NTS Regional-Network Location Studv: 

1) For our groomed dataset, empirical travel-time curves (derived using the known NTS hypocenters) 
produce GT6 locations. (Note: our dataset does not include correlation picks, which- where applicable 
- may further improve location accuracy). 

2) Two other Basin and Range models (based on surface-wave modeling) produce GT9 and GT13 
locations. The iasp91 model produces GT14 locations. 

3) Epicenter and known travel-time prediction accuracy (derived from known NTS-explosion 
hypocenters) are well correlated. However, the correlation between epicenter and estimated travel- 
time prediction (multiple-location posteriori residuals) is not reliable. Therefore, assessment of 
location accuracy based on travel-time fit is also not reliable. 

SubsDace Detector 

1) 

2) 

Subspace detection is a valuable tool for detecting and screening on-going, mine-related seismicity. 

For our case example (Kirovsk mine) the false alarm rate is zero but detection rate is currently about 
one-third. 

3) For the Kirovsk mine a master-event set spanning a long time window (current set is from a 3-month 
period) may be needed to improve the detections rate. 
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